Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Mater ; 22(5): 605-611, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37069294

RESUMO

Electron correlation plays an essential role in the macroscopic quantum phenomena in the moiré heterostructure, such as antiferromagnetism and correlated insulating phases. Unlike the phenomena where the interaction involves only electrons in one layer, the interaction of distinct phases in two or more layers represents a new horizon forward, such as the one in the Kondo lattice model. Here, using interlayer excitons as a probe, we show that the interlayer interactions in heterobilayers of tungsten diselenide and molybdenum disulfide (WSe2/MoS2) can be electrically switched on and off, resulting in a layer-dependent correlated phase diagram, including single-layer, layer-selective, excitonic-insulator and layer-hybridized regions. We demonstrate that these correlated phases affect the interlayer exciton non-radiative decay pathways. These results reveal the role of strong correlation on interlayer exciton dynamics and pave the way for studying the layer-resolved strong correlation behaviour in moiré heterostructures.

2.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499375

RESUMO

The development of Fusarium head blight (FHB)-resistant winter wheat cultivars using the gene Fhb1 has been conducted in northern China. Sumai 3, a Chinese FHB-resistant spring wheat cultivar, carries three FHB resistance genes: Fhb1, Fhb2 and Fhb5. To better use these genes for increasing FHB resistance in northern China, it is necessary to elucidate the pyramiding effects of Fhb1, Fhb2 and Fhb5 in winter wheat backgrounds. Eight gene combinations involving Fhb1, Fhb2 and Fhb5 were identified in a double haploid (DH) population, and the effects on FHB resistance were evaluated in six tests. At the single gene level, Fhb1 was more efficient than the other two genes in single-floret inoculation tests, whereas Fhb5 showed better resistance than Fhb1 and Fhb2 under a natural infection test. Pyramiding Fhb1, Fhb2 and Fhb5 showed better FHB resistance than the other gene combinations. Forty-nine DH lines showing consistently better resistance than the moderately susceptible control Huaimai 20 in multiple tests were evaluated for main agronomic traits, and no difference in grain yield was found between the mean values of DH lines and the recipient parents Lunxuan 136 and Lunxuan 6, which are higher than those of recipient parent Zhoumai 16 and the donor parent Sumai 3 (p < 0.05). Based on the phenotypic and genomic composition analyses, five promising DH lines fully combined the FHB resistance of donor Sumai 3 and the elite agronomic traits from the recipient parents. This study elucidates the pyramiding effects of three FHB resistance genes and that the promising DH lines with resistance to FHB can be directly applied in wheat production or as parents in winter wheat breeding programs.


Assuntos
Fusarium , Fusarium/genética , Triticum/genética , Melhoramento Vegetal , Mapeamento Cromossômico , Locos de Características Quantitativas , Doenças das Plantas/genética
3.
Front Plant Sci ; 13: 879768, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35734247

RESUMO

Winter frost has been considered the primary limiting factor in wheat production. Shimai 12 is an elite wheat cultivar grown in central and southern Hebei province of China, but sensitive to winter frost. In this study, the winter frost tolerant cultivar Lunxuan 103 was bred by introducing the recessive allele vrn-D1 from winter wheat Shijiazhuang 8 (frost tolerance) into Shimai 12 using marker-assisted selection (MAS). Different from Shimai 12, Lunxuan 103 exhibited a winter growth habit with strong winter frost tolerance. In the Shimai 12 × Shijiazhuang 8 population, the winter progenies (vrn-D1vrn-D1) had significantly lower winter-killed seedling/tiller rates than spring progenies (Vrn-D1aVrn-D1a), and the consistent result was observed in an association population. Winter frost damage caused a significant decrease in grain yield and spike number/m2 in Shimai 12, but not in Lunxuan 103 and Shijiazhuang 8. The time-course expression analysis showed that the transcript accumulation levels of the cold-responsive genes were higher in Lunxuan 103 and Shijiazhuang 8 than in Shimai 12. Lunxuan 103 possessed the same alleles as its parents in the loci for plant height, vernalization, and photoperiod, except for the vernalization gene Vrn-D1. An analysis of genomic composition showed that the two parents contributed similar proportions of genetic compositions to Lunxuan 103. This study provides an example of the improvement of winter frost tolerance by introducing the recessive vernalization gene in bread wheat.

4.
Micromachines (Basel) ; 12(11)2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34832775

RESUMO

Herein, we report a novel optical glass material, fluoroaluminate (AlF3) glass, with excellent optical transmittance from ultraviolet to infrared wavelength ranges, which provides more options for application in optical devices. Based on its performance, the phase-type Fresnel zone plate (FZP) by ultraviolet femtosecond (fs) laser-inscribed lithography is achieved, which induces the refractive index change by fs-laser tailoring. The realization of ultraviolet fs-laser fabrication inside glass can benefit from the excellent optical performance of the AlF3 glass. Compared with traditional surface-etching micro-optical elements, the phase-type FZP based on AlF3 glass exhibits a clear and well-defined geometry and presents perfect environmental suitability without surface roughness problems. Additionally, optical focusing and multi-wavelength imaging can be easily obtained. Phase-type FZP embedded in AlF3 glass has great potential applications in the imaging and focusing in glass-integrated photonics, especially for the ultraviolet wavelength range.

5.
Opt Express ; 27(10): 13744-13753, 2019 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-31163833

RESUMO

In this work, we investigated the nonlinear optical properties of monolayer MoS2 and WS2 modulated by defect engineering via chemical treatment. The results demonstrate that the two-photon luminescence (TPL) and two-photon absorption (TPA) coefficient were remarkably improved after the repair of sulfur vacancies for both monolayer MoS2 and WS2. After the chemical treatment, the nonradiative relaxation path dominant in pristine monolayer MoS2 is significantly alleviated, resulting in enhanced TPL. Our work affords an effective way to tailor the nonlinear absorption, luminescence and relaxation properties of sulfur-based two-dimensional metal dichalcogenides by defect engineering.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...